Show simple item record

Discovering Latent Classes in Relational Data

dc.date.accessioned2005-12-22T01:36:09Z
dc.date.accessioned2018-11-24T10:24:13Z
dc.date.available2005-12-22T01:36:09Z
dc.date.available2018-11-24T10:24:13Z
dc.date.issued2004-07-22
dc.identifier.urihttp://hdl.handle.net/1721.1/30489
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/30489
dc.description.abstractWe present a framework for learning abstract relational knowledge with the aimof explaining how people acquire intuitive theories of physical, biological, orsocial systems. Our approach is based on a generative relational model withlatent classes, and simultaneously determines the kinds of entities that existin a domain, the number of these latent classes, and the relations betweenclasses that are possible or likely. This model goes beyond previouspsychological models of category learning, which consider attributesassociated with individual categories but not relationships between categories.We apply this domain-general framework to two specific problems: learning thestructure of kinship systems and learning causal theories.
dc.format.extent12 p.
dc.format.extent13382538 bytes
dc.format.extent572002 bytes
dc.language.isoen_US
dc.subjectAI
dc.subjectlearning
dc.subjectcategorization
dc.subjectrelations
dc.subjectkinship
dc.titleDiscovering Latent Classes in Relational Data


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2004-050.pdf572.0Kbapplication/pdfView/Open
MIT-CSAIL-TR-2004-050.ps13.38Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record