Show simple item record

Learning to Trade with Insider Information

dc.date.accessioned2005-12-22T02:37:21Z
dc.date.accessioned2018-11-24T10:24:37Z
dc.date.available2005-12-22T02:37:21Z
dc.date.available2018-11-24T10:24:37Z
dc.date.issued2005-10-07
dc.identifier.urihttp://hdl.handle.net/1721.1/30573
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/30573
dc.description.abstractThis paper introduces algorithms for learning how to trade usinginsider (superior) information in Kyle's model of financial markets.Prior results in finance theory relied on the insider having perfectknowledge of the structure and parameters of the market. I show herethat it is possible to learn the equilibrium trading strategy whenits form is known even without knowledge of the parameters governingtrading in the model. However, the rate of convergence toequilibrium is slow, and an approximate algorithm that does notconverge to the equilibrium strategy achieves better utility whenthe horizon is limited. I analyze this approximate algorithm fromthe perspective of reinforcement learning and discuss the importanceof domain knowledge in designing a successful learning algorithm.
dc.format.extent15 p.
dc.format.extent16523384 bytes
dc.format.extent613212 bytes
dc.language.isoen_US
dc.subjectAI
dc.titleLearning to Trade with Insider Information


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2005-063.pdf613.2Kbapplication/pdfView/Open
MIT-CSAIL-TR-2005-063.ps16.52Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record