Show simple item record

Analysis of Perceptron-Based Active Learning

dc.date.accessioned2005-12-22T02:40:49Z
dc.date.accessioned2018-11-24T10:24:40Z
dc.date.available2005-12-22T02:40:49Z
dc.date.available2018-11-24T10:24:40Z
dc.date.issued2005-11-17
dc.identifier.urihttp://hdl.handle.net/1721.1/30585
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/30585
dc.description.abstractWe start by showing that in an active learning setting, the Perceptron algorithm needs $\Omega(\frac{1}{\epsilon^2})$ labels to learn linear separators within generalization error $\epsilon$. We then present a simple selective sampling algorithm for this problem, which combines a modification of the perceptron update with an adaptive filtering rule for deciding which points to query. For data distributed uniformly over the unit sphere, we show that our algorithm reaches generalization error $\epsilon$ after asking for just $\tilde{O}(d \log \frac{1}{\epsilon})$ labels. This exponential improvement over the usual sample complexity of supervised learning has previously been demonstrated only for the computationally more complex query-by-committee algorithm.
dc.format.extent15 p.
dc.format.extent11491832 bytes
dc.format.extent599624 bytes
dc.language.isoen_US
dc.subjectAI
dc.subjectactive learning
dc.subjectperceptron
dc.subjectlabel-complexity
dc.subjectmistake bound
dc.subjectselective sampling
dc.titleAnalysis of Perceptron-Based Active Learning


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2005-075.pdf599.6Kbapplication/pdfView/Open
MIT-CSAIL-TR-2005-075.ps11.49Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record