Show simple item record

Learning Semantic Scene Models by Trajectory Analysis

dc.date.accessioned2006-02-10T22:46:57Z
dc.date.accessioned2018-11-24T10:24:44Z
dc.date.available2006-02-10T22:46:57Z
dc.date.available2018-11-24T10:24:44Z
dc.date.issued2006-02-10
dc.identifier.urihttp://hdl.handle.net/1721.1/31208
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/31208
dc.description.abstractIn this paper, we describe an unsupervised learning framework to segment a scene into semantic regions and to build semantic scene models from long-term observations of moving objects in the scene. First, we introduce two novel similarity measures for comparing trajectories in far-field visual surveillance. The measures simultaneously compare the spatial distribution of trajectories and other attributes, such as velocity and object size, along the trajectories. They also pro-vide a comparison confidence measure which indicates how well the measured im-age-based similarity approximates true physical similarity. We also introduce novel clustering algorithms which use both similarity and comparison confidence. Based on the proposed similarity measures and clustering methods, a framework to learn semantic scene models by trajectory analysis is developed. Trajectories are first clustered into vehicles and pedestrians, and then further grouped based on spatial and velocity distributions. Different trajectory clusters represent different activities. The geometric and statistical models of structures in the scene, such as roads, walk paths, sources and sinks, are automatically learned from the trajectory clusters. Abnormal activities are detected using the semantic scene models. The system is robust to low-level tracking errors.
dc.format.extent16 p.
dc.format.extent18317255 bytes
dc.format.extent2106560 bytes
dc.language.isoen_US
dc.titleLearning Semantic Scene Models by Trajectory Analysis


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2006-008.pdf2.106Mbapplication/pdfView/Open
MIT-CSAIL-TR-2006-008.ps18.31Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record