Show simple item record

Adaptation for Regularization Operators in Learning Theory

dc.date.accessioned2006-09-29T18:36:45Z
dc.date.accessioned2018-11-24T10:25:07Z
dc.date.available2006-09-29T18:36:45Z
dc.date.available2018-11-24T10:25:07Z
dc.date.issued2006-09-10
dc.identifier.urihttp://hdl.handle.net/1721.1/34217
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/34217
dc.description.abstractWe consider learning algorithms induced by regularization methods in the regression setting. We show that previously obtained error bounds for these algorithms using a-priori choices of the regularization parameter, can be attained using a suitable a-posteriori choice based on validation. In particular, these results prove adaptation of the rate of convergence of the estimators to the minimax rate induced by the "effective dimension" of the problem. We also show universal consistency for theses class methods.
dc.format.extent19 p.
dc.format.extent963649 bytes
dc.format.extent819523 bytes
dc.language.isoen_US
dc.subjectoptimal rates, Learning, regularization methods, adaptation, cross-validation
dc.titleAdaptation for Regularization Operators in Learning Theory


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2006-063.pdf819.5Kbapplication/pdfView/Open
MIT-CSAIL-TR-2006-063.ps963.6Kbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record