Show simple item record

Quantifier-Free Boolean Algebra with Presburger Arithmetic is NP-Complete

dc.date.accessioned2007-01-02T20:21:50Z
dc.date.accessioned2018-11-24T10:25:15Z
dc.date.available2007-01-02T20:21:50Z
dc.date.available2018-11-24T10:25:15Z
dc.date.issued2007-01-01
dc.identifier.urihttp://hdl.handle.net/1721.1/35258
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/35258
dc.description.abstractBoolean Algebra with Presburger Arithmetic (BAPA) combines1) Boolean algebras of sets of uninterpreted elements (BA)and 2) Presburger arithmetic operations (PA). BAPA canexpress the relationship between integer variables andcardinalities of unbounded finite sets and can be used toexpress verification conditions in verification of datastructure consistency properties.In this report I consider the Quantifier-Free fragment ofBoolean Algebra with Presburger Arithmetic (QFBAPA).Previous algorithms for QFBAPA had non-deterministicexponential time complexity. In this report I show thatQFBAPA is in NP, and is therefore NP-complete. My resultyields an algorithm for checking satisfiability of QFBAPAformulas by converting them to polynomially sized formulasof quantifier-free Presburger arithmetic. I expect thisalgorithm to substantially extend the range of QFBAPAproblems whose satisfiability can be checked in practice.
dc.format.extent14 p.
dc.format.extent315999 bytes
dc.format.extent842090 bytes
dc.language.isoen_US
dc.subjectCaratheodory theorem
dc.subjectinteger linear programming
dc.subjectinteger cone
dc.subjectHilbert basis
dc.titleQuantifier-Free Boolean Algebra with Presburger Arithmetic is NP-Complete


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2007-001.pdf315.9Kbapplication/pdfView/Open
MIT-CSAIL-TR-2007-001.ps842.0Kbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record