Show simple item record

Elastic-Net Regularization in Learning Theory

dc.date.accessioned2008-07-24T20:00:33Z
dc.date.accessioned2018-11-26T22:25:23Z
dc.date.available2008-07-24T20:00:33Z
dc.date.available2018-11-26T22:25:23Z
dc.date.issued2008-07-24en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/41889
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/41889
dc.description.abstractWithin the framework of statistical learning theory we analyze in detail the so-called elastic-net regularization scheme proposed by Zou and Hastie ["Regularization and variable selection via the elastic net" J. R. Stat. Soc. Ser. B, 67(2):301-320, 2005] for the selection of groups of correlated variables. To investigate on the statistical properties of this scheme and in particular on its consistency properties, we set up a suitable mathematical framework. Our setting is random-design regression where we allow the response variable to be vector-valued and we consider prediction functions which are linear combination of elements (features) in an infinite-dimensional dictionary. Under the assumption that the regression function admits a sparse representation on the dictionary, we prove that there exists a particular "elastic-net representation" of the regression function such that, if the number of data increases, the elastic-net estimator is consistent not only for prediction but also for variable/feature selection. Our results include finite-sample bounds and an adaptive scheme to select the regularization parameter. Moreover, using convex analysis tools, we derive an iterative thresholding algorithm for computing the elastic-net solution which is different from the optimization procedure originally proposed in "Regularization and variable selection via the elastic net".en_US
dc.format.extent32 p.en_US
dc.subjectmachine learningen_US
dc.subjectregularizationen_US
dc.subjectfeature selectionen_US
dc.titleElastic-Net Regularization in Learning Theoryen_US


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2008-046.pdf462.2Kbapplication/pdfView/Open
MIT-CSAIL-TR-2008-046.ps73.87Kbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record