Show simple item record

An $\Omega(n \log n)$ Lower Bound on the Cost of Mutual Exclusion

dc.date.accessioned2008-07-28T13:30:11Z
dc.date.accessioned2018-11-26T22:25:23Z
dc.date.available2008-07-28T13:30:11Z
dc.date.available2018-11-26T22:25:23Z
dc.date.issued2006-07-23en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/41890
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/41890
dc.description.abstractWe prove an $\Omega(n \log n)$ lower bound on the number ofnon-busywaiting memory accesses by any deterministic algorithm solving$n$ process mutual exclusion that communicates via shared registers.The cost of the algorithm is measured in the \emph{state change} costmodel, a variation of the cache coherent model. Our bound is tight inthis model. We introduce a novel information theoretic prooftechnique. We first establish a lower bound on the information neededby processes to solve mutual exclusion. Then we relate the amount ofinformation processes can acquire through shared memory accesses tothe cost they incur. We believe our proof technique is flexible andintuitive, and may be applied to a variety of other problems andsystem models.en_US
dc.format.extent14 p.en_US
dc.relationMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratoryen_US
dc.relationen_US
dc.subjectMutual exclusionen_US
dc.subjectTime complexityen_US
dc.subjectLower bound techniquesen_US
dc.titleAn $\Omega(n \log n)$ Lower Bound on the Cost of Mutual Exclusionen_US


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2008-047.pdf387.9Kbapplication/pdfView/Open
MIT-CSAIL-TR-2008-047.ps73.87Kbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record