Show simple item record

Submodular Secretary Problem and Extensions

dc.date.accessioned2010-02-02T23:30:07Z
dc.date.accessioned2018-11-26T22:26:12Z
dc.date.available2010-02-02T23:30:07Z
dc.date.available2018-11-26T22:26:12Z
dc.date.issued2010-02-01
dc.identifier.urihttp://hdl.handle.net/1721.1/51336
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/51336
dc.description.abstractOnline auction is an essence of many modern markets, particularly networked markets, in which information about goods, agents, and outcomes is revealed over a period of time, and the agents must make irrevocable decisions without knowing future information. Optimal stopping theory, especially the classic "secretary problem", is a powerful tool for analyzing such online scenarios which generally require optimizing an objective function over the input. The secretary problem and its generalization the "multiple-choice secretary problem" were under a thorough study in the literature. In this paper, we consider a very general setting of the latter problem called the "submodular secretary problem", in which the goal is to select k secretaries so as to maximize the expectation of a (not necessarily monotone) submodular function which defines efficiency of the selected secretarial group based on their overlapping skills. We present the first constant-competitive algorithm for this case. In a more general setting in which selected secretaries should form an independent (feasible) set in each of l given matroids as well, we obtain an O(l log^2 r)-competitive algorithm generalizing several previous results, where r is the maximum rank of the matroids. Another generalization is to consider l knapsack constraints instead of the matroid constraints, for which we present an O(l)-competitive algorithm. In a sharp contrast, we show for a more general setting of "subadditive secretary problem, there is no o~(sqrt(n))-competitive algorithm and thus submodular functions are the most general functions to consider for constant competitiveness in our setting. We complement this result by giving a matching O(sqrt(n))-competitive algorithm for the subadditive case. At the end, we consider some special cases of our general setting as well.en_US
dc.format.extent19 p.en_US
dc.rightsCreative Commons Attribution 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.titleSubmodular Secretary Problem and Extensionsen_US


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2010-002.pdf318.4Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported