Show simple item record

Bayesian perceptual inference in linear Gaussian models

dc.date.accessioned2010-09-22T20:45:11Z
dc.date.accessioned2018-11-26T22:26:26Z
dc.date.available2010-09-22T20:45:11Z
dc.date.available2018-11-26T22:26:26Z
dc.date.issued2010-09-21
dc.identifier.urihttp://hdl.handle.net/1721.1/58669
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/58669
dc.description.abstractThe aim of this paper is to provide perceptual scientists with a quantitative framework for modeling a variety of common perceptual behaviors, and to unify various perceptual inference tasks by exposing their common computational underpinnings. This paper derives a model Bayesian observer for perceptual contexts with linear Gaussian generative processes. I demonstrate the relationship between four fundamental perceptual situations by expressing their corresponding posterior distributions as consequences of the model's predictions under their respective assumptions.en_US
dc.format.extent8 p.en_US
dc.rightsCreative Commons Attribution-ShareAlike 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/
dc.subjectcue integrationen_US
dc.subjectcue combinationen_US
dc.subjectexplaining awayen_US
dc.subjectdiscountingen_US
dc.titleBayesian perceptual inference in linear Gaussian modelsen_US


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2010-046.pdf232.9Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-ShareAlike 3.0 Unported
Except where otherwise noted, this item's license is described as Creative Commons Attribution-ShareAlike 3.0 Unported