Show simple item record

Design and Control of an Anthropomorphic Robotic Finger with Multi-point Tactile Sensation

dc.date.accessioned2004-10-20T20:28:07Z
dc.date.accessioned2018-11-24T10:22:57Z
dc.date.available2004-10-20T20:28:07Z
dc.date.available2018-11-24T10:22:57Z
dc.date.issued2001-05-01en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7070
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/7070
dc.description.abstractThe goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.en_US
dc.format.extent88 p.en_US
dc.format.extent17699541 bytes
dc.format.extent1837341 bytes
dc.language.isoen_US
dc.subjectAIen_US
dc.subjecttactile sensationen_US
dc.subjectfingeren_US
dc.subjectroboten_US
dc.subjectanthropomorphicen_US
dc.subjectskinen_US
dc.titleDesign and Control of an Anthropomorphic Robotic Finger with Multi-point Tactile Sensationen_US


Files in this item

FilesSizeFormatView
AITR-2001-005.pdf1.837Mbapplication/pdfView/Open
AITR-2001-005.ps17.69Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record