Show simple item record

Throwing Down the Visual Intelligence Gauntlet

dc.date.accessioned2012-06-21T19:45:06Z
dc.date.accessioned2018-11-26T22:26:50Z
dc.date.available2012-06-21T19:45:06Z
dc.date.available2018-11-26T22:26:50Z
dc.date.issued2012
dc.identifier.citationMachine Learning for Computer Vision (2012); eds: Cipolla R, Battiato S, Giovanni Maria F. Springer: Studies in Computational Intelligence Vol. 411.en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/71199
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/71199
dc.description.abstractIn recent years, scientific and technological advances have produced artificial systems that have matched or surpassed human capabilities in narrow domains such as face detection and optical character recognition. However, the problem of producing truly intelligent machines still remains far from being solved. In this chapter, we first describe some of these recent advances, and then review one approach to moving beyond these limited successes---the neuromorphic approach of studying and reverse-engineering the networks of neurons in the human brain (specifically, the visual system). Finally, we discuss several possible future directions in the quest for visual intelligence.en_US
dc.format.extent15 p.en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectVisionen_US
dc.subjectArtificial intelligenceen_US
dc.titleThrowing Down the Visual Intelligence Gauntleten_US


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2012-016.pdf573.9Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported