dc.description.abstract | Indoor localization -- a device's ability to determine its location within an extended indoor environment -- is a fundamental enabling capability for mobile context-aware applications. Many proposed applications assume localization information from GPS, or from WiFi access points. However, GPS fails indoors and in urban canyons, and current WiFi-based methods require an expensive, and manually intensive, mapping, calibration, and configuration process performed by skilled technicians to bring the system online for end users. We describe a method that estimates indoor location with respect to a prior map consisting of a set of 2D floorplans linked through horizontal and vertical adjacencies. Our main contribution is the notion of "path compatibility," in which the sequential output of a classifier of inertial data producing low-level motion estimates (standing still, walking straight, going upstairs, turning left etc.) is examined for agreement with the prior map. Path compatibility is encoded in an HMM-based matching model, from which the method recovers the user s location trajectory from the low-level motion estimates. To recognize user motions, we present a motion labeling algorithm, extracting fine-grained user motions from sensor data of handheld mobile devices. We propose "feature templates," which allows the motion classifier to learn the optimal window size for a specific combination of a motion and a sensor feature function. We show that, using only proprioceptive data of the quality typically available on a modern smartphone, our motion labeling algorithm classifies user motions with 94.5% accuracy, and our trajectory matching algorithm can recover the user's location to within 5 meters on average after one minute of movements from an unknown starting location. Prior information, such as a known starting floor, further decreases the time required to obtain precise location estimate. | en_US |