Cascading Regularized Classifiers
Unknown author (2004-04-21)
Among the various methods to combine classifiers, Boosting was originally thought as an stratagem to cascade pairs of classifiers through their disagreement. I recover the same idea from the work of Niyogi et al. to show how to loosen the requirement of weak learnability, central to Boosting, and introduce a new cascading stratagem. The paper concludes with an empirical study of an implementation of the cascade that, under assumptions that mirror the conditions imposed by Viola and Jones in [VJ01], has the property to preserve the generalization ability of boosting.