Fast Rates for Regularized Least-squares Algorithm
Unknown author (2005-04-14)
We develop a theoretical analysis of generalization performances of regularized least-squares on reproducing kernel Hilbert spaces for supervised learning. We show that the concept of effective dimension of an integral operator plays a central role in the definition of a criterion for the choice of the regularization parameter as a function of the number of samples. In fact, a minimax analysis is performed which shows asymptotic optimality of the above-mentioned criterion.