Review of Application of Pressure Derivative Concept to Multirate Tests

Onuh, Haruna (2009-12-15)


Pressure build-up data in low permeability reservoirs take too long and are usually of poor quality. A pressure buildup test is perhaps the most widely performed transient test. In pressure buildup test, a well which has been producing for some time at a constant rate is shut-in and the bottomhole pressure is measured as a function of shut-in time. It is easier to conduct and interpret than most other transient tests, but often it is not economically feasible to shut in a well with a high production rate for a buildup test. Sand producing wells are not good candidates for long pressure drawdown tests. It is often impracticable to maintain a constant rate long enough to complete a drawdown test. In these cases, a multi-rate flow test should be run instead of buildup or drawdown tests. In most cases, the well is shut-in at the surface and as a result, some of the early time pressure data may be affected by wellbore storage. Actually a well-designed multi-rate flow test may minimize the influence of wellbore storage on pressure data. A new technique based on the pressure derivative concept is presented for interpreting a multi-rate flow test. It is shown here that a Cartesian plot of the pressure derivative data versus a time group is a straight line from which the reservoir permeability can be estimated. It is also shown that for the case of two-rate test, Tiab’s Direct Synthesis technique is applicable for calculating permeability and skin. A step by step procedure is presented for interpreting a multi-rate test using pressure and pressure derivative data. This new technique is illustrated by several numerical examples.